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Abstract

The temperature of a surface viewed by a long-wave in-
frared camera can be predicted by a thermophysical model
(a conservation of energy statement at the surface of a
unit volume). However, this prediction currently requires
at least 24 hours of previous imagery in order to estimate
the parameters of the model. Absolute invariants, rela-
tive invariants, and quasi-invariants provide three possible
methods for circumventing this obstacle. Lie group anal-
ysis is a fundamental tool for systematically exploring in-
variance and for finding the appropriate transformations
groups. This paper discusses the relevant parts of Lie group
analysis and uses them to find the transformation groups
and absolute invariants of the thermophysical model. The
goal is to recognize objects based upon a composition of
materials that are identified using invariant features of in-
frared imagery.

1. Introduction

Lie group analysis provides a constructive method for
determining the transformation groups and invariants de-
fined on a manifold Mf determined by a model equation.
Although the theory discussed will be applied to LWIR sen-
sors, this technique is not sensor specific, therefore it is ap-
plicable to any sensor available (MMW, EO, IR, RADAR,
etc.). Invariant features provide the foundation upon which
object recognition systems may be rigorously and soundly
constructed. Given an invariant determined analytically, the
constant value an invariant function assumes for a given
class can be determined by a single measurement. In prac-
tice, to account for the variability in the measurement pro-

cess, several measurements would be taken to determine a
sample mean for the constant value.

This paper analyzes the (thermophysical) conservation
of energy model with Lie groups. From this model, it is
possible to derive the transformation groups and invariants
using Lie group analysis. Therefore, the independence and
linear transformation assumptions made in previous works
will no longer be required [5].

2. The Thermophysical Model

The thermophysical model (Figure 1) is based on the
conservation of energy law from heat transfer theory
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Each component is a heat flux ( W

m� ) and the variables are
further described in [2] and [1].

3. Lie Group Analysis

The following discourse is a summary of the fundamen-
tal components of Lie group analysis. Theorem 16 shows
an invariant function is induced by an associated group
action. This theorem is usually taken as a definition [6, 7].
An exception is Diudonné [4] who used the concept of
induced group actions to determine invariants. This is a
self-contained discourse that attempts to touch only briefly
those components of Lie group analysis that are applicable
to algebraic equations of the form

f�x� � � (2)
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Figure 1. Energy exchange at the surface of
a viewed object. Incident energy is primarily
in the visible spectrum. Surfaces lose energy
by convection to air, via radiation to the atmo-
sphere, and via conduction to the interior of
the object. A storage term accounts for any
residual energy.
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Figure 2. Top down view of the major steps in-
volved in Lie group analysis of algebraic (non-
differential) equations. Each step (and sup-
porting math notation) is discussed in sec-
tion 3.
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Figure 3. An intuitive illustration of Lie group
analysis. (A) the manifold defined by a con-
servation equation (ex. surface of a cylinder).
(B) Tangent vectors on the manifold. (C) A Ba-
sis for the Tangent Space at point p. (D) Slices
of the cylinder (circles) represent Absolute In-
variants, �, under rotation. (E) Rotations by �

represent a transformation group.

where x � �x�� � � � � xn� � �n and f is a differentiable
function, f � C����. Denote the set of roots of f by

Mf � fx � �n � f�x� � �g � (3)

If the differential df �� � �x � Mf then f implicitly de-
fines an n� 	 dimensional manifold. We assume this man-
ifold to be connected1.

A symmetry of Mf is a bijective mapping g of Mf such
that if f�x� � � then f�gx� � �. Lie group analysis will de-
termine continuous symmetries only; if the manifold is not
connected, discrete symmetries may exist and cannot be de-
termined by the methods considered here. An example of a
discrete symmetry is reflection. For physical systems, such
as object recognition, discrete symmetries are generally not
an issue.

In general, Lie group analysis is applicable for sys-
tems of equations, however, any system of equations g i �
� for i � 	� � � � �m can be replaced by a single equation
f �

Pm

i�� g
�
i � � in the sense that Mg������gm � Mf .

Hence, there is no loss of generality in assuming only one
equation. Figure 3 graphically illustrates Lie group analy-
sis.

1A manifold,M , is connected if to each pair of points inM there exists
a curve inM connecting the two points.



3.1. Curves and Groups of Transformations

A curve in �n is a differentiable function

�� � I � �n

� � �� ���� � � � � �n�

where I � � is an open interval and �j � � for
j � 	� � � � � n. A curve in Mf is a curve in �n whose image
lies in Mf . By the definition of Mf this implies �� is a
curve in Mf if and only if

f���� � � �� � I�

A curve �� in �n determines n-component functions

��xj by
��xj � 	j 	 ��

where
	j�
� � �n � �

� ���� � � � � �n� �� �j

is the jth projection function. Since �� is differentiable
each component function ��xj must necessarily be differ-
entiable, so ��xj � C��I�. Thus a curve �� can be written
as

�� � I � �n

� � �� ���x� � � � � � ��xn�

where each ��xj � C��I�.
If ���x� � � � � � ��xn� is a vector field on �n (so

��xj � ��xj �x�� x � �
n) then for each fixed �

���x� � ���x��x�� � � � � ��xn�x�� � C���n�� � � �� C���n�� �z �
n factors

�

so each ���x� determines a transformation map of �n

given by

���
� � �n � �n

� x �� ���x��x�� � � � � ��xn�x���

As � varies over I this determines a family of transforma-
tions f���x�g��I .

If the evaluation function at x is defined as
ex�
� � C���n�� � � �� C���n�� �z �

n factors

� �n

� �f�� � � � � fn� �� �f��x�� � � � � fn�x��

then for a fixed �,
���x� � ex���� � ���x��x�� � � � � ��xn�x�� � �

n�

If x is treated as a fixed constant then a curve is determined
as � varies over I by

���x� � ex���� � I � �n

� � �� ���x��x�� � � � � ��xn�x���

As x varies over �n, ���x� determines a family of curves,
f���x�gx��n , one for each point x � �n.

Example 1

Consider f�x� y� z� � x� � y� � z � 	. The curve

���x� � � � ��

� � �� �x� �� y� �� � 
x�� z�

is a curve in Mf for any x � �x� y� z� �Mf since
f����x�� � ���x�x��

� � ���y�x��
� � ���z�x�� � 	

� �x� ��� � y� � ��� � 
x�� z� � 	

� x� � y� � z � 	

� ��

If one fixes � � 	 then

���
� � Mf �Mf

� �x� y� z� �� �x� 	� y� 	 � 
x� z�

determines a transformation of Mf .

The set of transformations f���x�g��I has a natural
binary operation defined on it given by composition

��� 	 ����
� � �n � �n

� x �� ������x���

A group of transformations f���x�g��I is a set of trans-
formations such that the operation of composition satisfies

i. associativity, �� 	 ��� 	 ��� � ��� 	 ��� 	 ��

ii. there exist an identity element ��, and
iii. each element in f���x�g��I has an inverse.

The transformation ���x� is a parameterized transfor-
mation of �n. Since it has a single parameter, the group
of transformations f���x�g��I is called a one-parameter
group of transformations.

A one-parameter group of transformations f ���x�g��I
is often called a flow because this “visually depicts” these
transformations: Consider a particle at point x in�n at time
� � �. As � varies the curve ���x� traces out a trajectory
in �n. This trajectory is the flow of the particle under the
curve ��.

A one-parameter Lie Group is a group that also carries
the structure of a 1-dimensional differentiable manifold.
This additional structure on a group allows the ability to
speak of continuity and differentiability.

3.2. Tangent Vectors and Vector Fields

A tangent vector consists of a vector part and a point
of application. We denote a tangent vector by v x �
�v�� v�� � � � � vn�x where �v�� v�� � � � � vn� is “the vector part”
and x is the point of application. If �� is a curve then
d
d�

���
��a

�� determines a tangent vector at a�.

Each tangent vector vx determines a map by

vx�
� � C���n�� �

� f ��
d

d�

�����
���

f�x� �vx�



where
C���n� � The set of differentiable functions on �n�

For brevity, one simply writes

vx�f� �
d

d�

�����
���

f�x� �vx��

Example 2

If f�x� y� z� � x� � xy � yz � z� � 	, vx � �	� 
� �� and
x � �x� y� z� � �	� �� 	� then

x� �vx � �	 � �� 
�� 	�
so

vx�f��
d

d�

�����
���

f�	 � ��� � �	 � ���
�� � �
���	� � �	�� � 	g

�
d

d�

�����
���

f��� � ��� 
g

�f��� �g���

���

It is an easy exercise to show that vx�f� �
d
d�

���
���

f�x � �vx� � d
d�

���
���

f���� for any curve ��

through the point x satisfying d
d�

���
���

��xj � vj .

The set of all tangent vectors at a point x � �n forms
a vector space of dimension n, called the tangent space
of �n at x, which is denoted Tx��

n�. If ���x� � x then
one says “���x� is a curve at x”. Let ���x� be a curve

at x. Then d
d�

���
���

���x� � Tx��
n�. It takes n values to

specify the components of the tangent vector uniquely at x.
A vector field on Mf is a function �� that assigns to each
point x �Mf � �n a vector in �n

�� � Mf � �n�

A set of tangent vectors fvxgx��n on �n determines a
vector field v on �n

v� � �n �
�
x��n

Tx��
n�

� x �� vx
where the disjoint union

�
x��n

Tx��
n�

is called the tangent bundle of�n. It forms a manifold of di-

mension 
n. The tangent vector d
d�

���
���

���x� � Tx��
n� �

S
x��nTx��

n� and requires 
n values to uniquely specify
it, n values to specify the components of the tangent vector
at x, and n values to specify x itself.

A vector field v � �v�� � � � � vn� on �n is determined
by n component functions vj � C���n�. The relation
between a vector field and a tangent vector at x determined
by the vector field is just evaluation

ex�v� � vx�

Example 3

Given the vector field v � �x�� �x � z� y� and point
x � �	� �� 	�, the evaluation function determines the
tangent vector

ex�v� � vx � �	� 
� ���

For f�x� y� z� � x� � xy � yz � z� � 	,

vx�f� � �

the same result as previously calculated.

Lemma 4 Let v � �v�� v�� � � � � vn� be a vector field and
f � C���n�. Then

v�f� �

nX
j��

vj
�f

�xj
� (4)

Proof: Apply the chain rule.

By this lemma, it is meaningful to write

v�f� �

�
� nX

j��

vj
�

�xj

�
A f

and make the identification

v � �v�� v�� � � � � vn��

nX
j��

vj
�

�xj
�

This equivalence between vector fields and tangent vectors
can be formalized using the concept of derivations [3].

Thus a tangent vector, and therefore vector fields as well,
can be viewed as either an ordered n–tuple or as an operator.
It is this ability to view tangent vectors (vector fields) from
both perspectives that makes them so powerful.

3.3. Tangent Fields and Infinitesimal Generators

The set of vector fields over �n consisting of elements
v � �v�� v�� � � � � vn�

where
vj � vj�x� � C���n�

form a module over the ring C ���n� with scalar multipli-
cation being componentwise. Since

�gv��
� � C���n�� C���n�

� f �� �gv��f�

where
��gv�f ��
� � �n � �

� x �� �g�x�vx�f

the set of all vector fields satisfying
v�f� � �

form a submodule since
v�f� � � and s�f� � � �v � s�f � v�f� � s�f� � �

and



v�f� � � and g � C���n� �gv�f � ��

We call the elements of this submodule the killing fields
of f . A collection of basis elements for this submodule are
called infinitesimal generators. A set of orthonormal vector
fields is a “moving frame” in standard differential geometry
terminology.

There are many ways to determine a basis set. Since
the killing fields form a module in their own right, one can
apply linear algebra to obtain

Theorem 5 Suppose f � C���n�. If rf�x�rf�x�T ��
� �x � Mf then any n � 	 columns (rows) of In�n �
rfT �rf rfT ���rf , where In�n is the matrix consisting
of the constant function 1 on the diagonal and the zero func-
tion in all other entries, form a basis for the killing fields of
f .

Proof: See [1].

Example 6

Given
f�x� y� z� � ax� by � cz� a� c �� ��

Then x � Mf if z � �
q
�ax�by

c
. Choosing the positive

root (the results are the same), and making this substitution,
v�f� � � gives

v�f� � �a�vx � �b�vy � �
c

r
�
ax� by

c
�vz � ��

Solving for vx and eliminating this coefficient yields

v � vx
�

�x
� vy

�

�y
� vz

�

�z

� vy

�
�b

a

�

�x
�

�

�y

	
� vz

�
�
c

q
ax�by
�c

�a

�

�x
�

�

�z

�
A �

The two vector fields on �� given by

�� � �
�b

a
�
�

�x
�

�

�y

�� � �
�
c

q
�ax�by

c

a
�
�

�x
�

�

�z

form a basis for the killing fields of f .

Since the infinitesimal generators form a basis for the
killing fields of f , every vector field v such that v�f� � �,
with infinitesimal generators f��� � � � � �n��g, can be
written uniquely as

v �

n��X
i��

gi�i (5)

for some gi � C���n� for i � 	� � � � � n� 	

3.4. Computation of Groups of Transformations
from the Infinitesimal Generators

Let

���x� � I � �n

� � �� ���x��x�� � � � � ��xn�x��

be a curve in �n satisfying ���x� � x � Mf . Recall �� is
a curve in Mf if and only if

f���� � � �� � I�

Theorem 7 Let ���x� � x � Mf . Then �� is a curve in
Mf if and only if

d���x�

d�
� rf����x�� � ��

Proof: See [1].

Written in terms of components this condition reads
d���x�

d�
� rf����x�� �

nX
j��

d��xj �x�

d�

�f

�xj

�



� nX
j��

d��xj �x�

d�

�

�xj

�
 f

� ��

Letting

vj����x�� �
d��xj �x�

d�
results in


� nX
j��

d��xj �x�

d�

�

�xj

�
 f �



� nX
j��

vj����x��
�

�xj

�
 f�

Using the identification

v � �v�� � � � � vn��

nX
j��

vj
�

�xj
gives

Theorem 8 If ���x� is a curve in Mf and v is a vector

field satisfying
d��xj �x�

d�
� vj����x�� for j � 	� � � � � n then

v�f� � �. Conversely, if
d��xj �x�

d�
� vj����x�� for j �

	� � � � � n, ���x� � x � Mf and v�f� � � then ���x� is a
curve in Mf .

This motivates

Definition 9 The curve ���x� in Mf is an integral curve of
v provided that �� � I

d���x�

d�
� v����x���



If ���x� � ���x��x�� � � � � ��xn�x�� � �x�� � � � � xn� � x

one says the curve ���x� starts at x.
Using the previous theorem and the new terminology

gives

Theorem 10 The curve ���x� in Mf is an integral curve
of v starting at x if and only if for j � 	� � � � � n

d��xj �x�

d�
� vj���x��x�� � � � � ��xn�x�� ��xj �x� � xj �

(6)
Groups of transformations in Mf determined by a vector

field v can now be found as follows: Let f� ig
n��
i�� form a

basis for v. Each �i is (can be identified with) a vector field
itself.

Solving the system of differential equations

d���x�

d�
� �i����x�� ���x� � x

for ���x� determines a group of transformations. If
gi � C���n� then gi�i is a vector field such that
gi�i�f� � � and the solution to

d���x�

d�
� gi�i����x�� ���x� � x

determines a curve in Mf , and hence a group of transfor-
mations of Mf . More generally, since the infinitesimal
generators f��� � � � � �n��g form a basis for the vector fields
v satisfying v�f� � �, then for any collection of functions

gi � C���n� i � 	� � � � � n� 	

it follows �
n��X
i��

gi�i

�
f � �

so the solution to the system of differential equations
d���x�

d�
�

�
n��X
i��

gi�i

�
���� ���x� � x

determines a curve in Mf , and hence a group of transfor-
mations of Mf .

The process of solving the equations to find a group of
transformations determined by the vector field v is called
the process of exponentiation.

Example 11

For the problem
f�x� y� z� � ax� by � cz� � �

it was previously determined one infinitesimal generator is

�� � �
�
c

q
�ax�by

c

a
�
�

�x
�

�

�z
�

To obtain the group of transformations associated with this
vector field solve
d��x�x�

d�
� ���c

a
�

q
�

a��x�b��y
c ��x � x

d��y�x�
d�

� � ��y � y
d��z�x�

d�
� 	 ��z � z�

Solving the third equation gives
��z�x� y� z� � z � ��

Substituting this into the first equation and integrating
gives

��x�x� y� z� � x� �
�
c

a
��

r
�
ax� by

c
��

��



��

The second equation obviously gives the identity map.
Thus

���x� � ���x�x�� ��y�x�� ��z�x��

� �x� �
�
c

a
��

r
�
ax� by

c
��

��



�� y� z � ���

It can easily be verified by substitution that these
maps define a group of transformations on Mf : Let
�x� y� z� �Mf and

�x � ��x�x� y� z� � x� �
�
c

a
��

r
�
ax� by

c
��

��



�

�y � ��y�x� y� z� � y

�z � ��z�x� y� z� � z � ��

Upon solving these equations for �x� y� z� and substitut-
ing into the original equation one obtains

a�x� b�y � c�z� � ��

Hence ��x� �y� �z� �Mf .

These results can be summarized by

Corollary 12 Let v be a vector field satisfying v�f� � �.
Each infinitesimal generator of v determines a curve inMf .

and

Corollary 13 Let f��g��� be a group of transformations
of Mf determined by the process of exponentiating. If
f�x� � � then f����x�� � �.

The conclusion of Corollary 13 is really just a tautology
since a group of transformations of Mf means if x � Mf

then ���x� �Mf .
The set of all such transformations determined by equa-

tion (7) is the group of symmetries of Mf , denoted by SMf
.

Clearly it is the smallest group containing all of the groups
“generated” by the infinitesimal generators f� �� � � � � �n��g
as subgroups. Furthermore, any transformation of M f can
be determined by solving such a system of equations.

Example 14

The family of curves generated by the vector field v�f�
where f�x� y� z� � ax� by� cz�, contains (among others)
the family of curves f���x�gx�Mf

determined by ��
���x� �

�
��x�x�� ��y�x�� ��z�x�

�
�

�
x�


c

a
�

r
ax� by

�c
��

��



�� y� z � �

�
�



and the family of curves f���x�gx�Mf
determined by ��

���x� �
�
��x�x�� ��y�x�� ��z�x�

�
�

�
x� �

b

a
��� y � �� z

	
�

However these are not the only curves. A simple
transformation of the above set of curves produces a new
family of curves f���x�gx�Mf

where
����x� �

�
���x�x�� ���y�x�� ���z�x�

�
�

�
x� y �

a

b


c

a
�

r
ax� by

�c
��

��



�� z � �

�
�

This leads to the next topic.

3.5. The Group of Symmetries, SMf

It was observed that for an infinitesimal generator � i of
a vector field v satisfying v�f� � �, the solution to

d���x�

d�
� �i����x�� ���x� � x

determines a group of transformations. If g i � C���n�
then gi�i is a vector field such that gi�i�f� � � and the
solution to

d���x�

d�
� gi�i����x�� ���x� � x

determines a curve in Mf , and hence a group of transfor-
mations of Mf . More generally, since the infinitesimal
generators f��� � � � � �n��g form a basis for the vector fields
v satisfying v�f� � �, then for any collection of functions

gi � C���n� i � 	� � � � � n� 	

it follows �
n��X
i��

gi�i

�
f � �

so the solution to the system of differential equations
d���x�

d�
�

�
n��X
i��

gi�i

�
���� ���x� � x

determines a curve in Mf , and hence a group of transfor-
mations of Mf .

The set of all such transformations determined by this
equation is the group of symmetries of Mf , denoted by
SMf

. Clearly it is the smallest group containing all
of the groups “generated” by the infinitesimal generators
f��� � � � � �n��g as subgroups. Furthermore, any transfor-
mation of Mf can be determined by solving such a system
of equations.

3.6. Invariant Functions and their Calculation

Suppose one is given the equation f � �. Let
��
� � SMf

�Mf �Mf

� ���� x� �� ���x�

be the SMf
–action on Mf . Then SMf

acts on hom�Mf ���
in a natural way

���
� � SMf
� hom�Mf ���� hom�Mf ���

� ������ �� �� ��

where
��� ����
� � Mf � �

� x �� �����x���

A simple calculation shows �� is a group action.

Definition 15 An element � � hom�Mf ��� is an SMf
–

invariant of hom�Mf ��� if � is invariant under the action
of SMf

on hom�Mf ���. In other words, the stabilizer of �
is SMf

f�� � SMf
� �� �� � �g � SMf

�

From this definition and the given induced action it follows

Theorem 16 Let SMf
be a group acting on a set

hom�Mf ���. An element � � hom�Mf ��� is an absolute
SMf

–invariant of hom�Mf ��� if and only if
�����x�� � ��x� ��� � SMf

�

This necessary and sufficient condition is often taken as
the definition of an absolute invariant function. Though the
definition of an invariant element of the set hom�Mf ���
should be expressed in terms of the more fundamental
action

��
� � SMf
�Mf �Mf

� ���� x� �� ���x��

The following theorem gives a necessary and sufficient
condition for such an absolute invariant function.

Theorem 17 Let �i for i � 	� � � � � n � 	 be the infinites-
imal generators for the killing fields of f . Then � �
hom�Mf ��� is an absolute SMf

-invariant function if and
only if �i��� � � for i � 	� � � � � n� 	.

Proof: See [1].

Computationally invariant functions can be calculated by
integrating the characteristic equation of each infinitesimal
generator. Given the generator � � � i�x�

�
�xi

� �j�x�
�
�xj

the characteristic equation is
dxi

�i�x�
�

dxj

�j�x�
� (7)

Example 18

For the standard example problem, the two infinitesimal
generators are

�� � �
�b

a
�
�

�x
�

�

�y

�� � �
�
c

q
�ax�by

c

a
�
�

�x
�

�

�z
�



For the first tangent vector, ��, the characteristic equation
is

dx

��b
a
�
�

dy

	
�

Integrating gives
ax� by � c�

where c� is the constant of integration. Since � is an
invariant function, it must be constant under the given
transformation, hence an invariant function under the group
of transformations

x �� x�
b

a
�� y �� y � �� z �� z

must be a function with parameters of the form ax � by,
that is

g��ax � by� z�
where g� is an arbitrary function.

For the second tangent vector, ��, the characteristic
equation is

dx

���c
a

q
�ax�by

c
�
�

dz

	
�

Integrating shows an invariant function under the
transformation group determined by this generator must be
of the form

g��ax� by � cz��
where g� is an arbitrary function.

An invariant function under both groups of transforma-
tions must be of the form

� � g��ax� by � cz��
where g� is an arbitrary function. Thus there are only trivial
invariants defined on the set of all roots of the function

f�x� y� z� � ax� by � cz��

3.7. Lie group analysis of Differential Equations

These concepts and theorems can be extended to address
the problem of finding the group of symmetries and invari-
ant functions of differential equations. These tend to be
more difficult to solve because to determine the coefficients
of the vector field v one must solve a system of partial dif-
ferential equations.

Lie group analysis determines the infinitesimal genera-
tors of the (connected) symmetry group of the conservation
equation. Once these generators are known, the invariants
� can be determined by the necessary and sufficient
condition

�i��� � � (8)
for each infinitesimal generator � i [6, 7]. The infinitesimal
generators form a basis for the tangent vector v described
below. (The “infinitesimal generators” are called generators
because they generate the transformation groups associated
with the symmetries of the differential equation.) The pro-
cedure will determine all 1-parameter continuous transfor-
mation groups of the differential equation. Discrete symme-
tries such as reflection will not be found. Given s is the set

of all dependent variables, x is the set of all (dependent and
independent) variables, and jxj is the number of variables in
x, then the computational procedure is as follows:

Form the tangent vector

v �

jxjX
j��

vxj �x�
�

�xj
� (9)

If the differential equation is of order n, then calculate
the nth prolongation of the tangent vector,

Pr�n�v � v �

jsjX
i��

X
j�Jsi

�j
si
�x�

�

�s
�j�
i

(10)

� j � �j�� � � � � jk� such that � � jk � jsij, and 	 � k � n,

and j �� ��� � � � � ��. J si is the set of sets of all un-
ordered multi-indices corresponding to the partials with
respect to the parameters of the dependent variables
(s�m�
i � m � 	� � � � � jsij), and where

�
j
h�x� � Dj



�vh�x�� jhjX

i��

vhi�x�
�h

�hi

�


�

jhjX
i��

vhi�x�
�k��h

�hihj�hj� � � � hjk
�

The coefficients, vxj , are determined by the requirement
�Pr�n�v��f� � �� (11)

This more complicated form reduces to the tangent vec-
tor in the case of non-differential equations. This technique
has been applied to the complete differential form of the
conservation statement.

4. Lie Group Analysis of the Conservation
Equation

Section 3 provides the necessary theory and concepts
for performing Lie group analysis of a differential equa-
tion such as the conservation equation (eq. (1)). The finite-
difference approximation of the conservation equation was
analyzed in [1]. The associated transformations and abso-
lute invariants were found. The following section details the
current state of the Lie group analysis of the full differential
form of the conservation equation.

Starting from equation (1), and relabeling

Ws � Ws cos � Wl � WlAsky

c� � �s c� � �l
c� � ��� c� � k

c	 � �CT

the conservation equation is
f � c�Ws�c�Wl�c�T

�
s �h�T��Ts��c�

�Ts

�z
�c	

�Ts

�t
�

(12)
The conservation equation, f , is a first order partial



f The conservation of energy equation
r The set of independent variables
s The set of dependent variables
x The set of variables (dependent and independent)
xj Individual variables from x

jxj Length of the vector, x.
vxj The prolongation variables associated with each xj

v
ft�zg
xj The partial of vxj with respect to t and z

Dz�f� The total derivative of f with respect to z

Table 1. Variables, definitions, and notations
used in this section.

differential equation (PDE) with seven variables, x �
fWs�Wl� h� T�� Ts� t� zg. The independent variables are
r � fWs�Wl� h� T�� t� zg, and the dependent variables are
s � fTsg.

The tangent vector (operator), v, is found by using
equation (9) from Section 3.7,

v � vWs

�

�Ws

� vWl

�

�Wl

� vh
�

�h

�vT�
�

�T�
� vTs

�

�Ts
� vt

�

�t
� vz

�

�z
where the vxj �x� are unknown coefficients (arbitrary
functions of all the variables) that we seek to determine
such that the infinitesimal criterion (the first prolongation
for a first order PDE) is satisfied �x lying on the manifold
determined by the conservation equation. The infinitesimal
criterion may be found by applying the first prolongation

Pr���v � vWs

�

�Ws

� vWl

�

�Wl

� vh
�

�h
� vT�

�

�T�

�vTs
�

�Ts
� vt

�

�t
� vz

�

�z
(13)

�
�
v
fzg
Ts

� T ftgs

�
v
fzg
t � T fzgs v

fTsg
t

�
�T fzgs

�
vfzgz � T fzgs vfTsgz

�
� T fzgs v

fTsg
Ts

� �

�T
fzg
s

�
�
v
ftg
Ts

� T ftgs

�
v
ftg
t � T ftgs v

fTsg
t

�
�T fzgs

�
vftgz � T ftgs vfTsgz

�
� T ftgs v

fTsg
Ts

� �

�T
ftg
sto the conservation equation,

Pr���v�f� � vWs
c� � vWl

c� � vh�T� � Ts� � vT�h

�vTs��c�T
�
s � h� � vt��� � vz���

�
�
v
fzg
Ts

� T ftgs

�
v
fzg
t � T fzgs v

fTsg
t

�
�T fzgs

�
vfzgz � T fzgs vfTsgz

�
� T fzgs v

fTsg
Ts

�
c�

�
�
v
ftg
Ts

� T ftgs

�
v
ftg
t � T ftgs v

fTsg
t

�
�T fzgs

�
vftgz � T ftgs vfTsgz

�
� T ftgs v

fTsg
Ts

�
c	

� �� (14)

The prolongation can be restricted to the manifold by first
obtaining an expression for one of the variables (which has
a non-vanishing coefficient) in terms of the other variables,
as determined by the conservation equation. Generally,
the least complicated derivations will be necessary if one
solves for the partial derivative, say T

ftg
s . Thus, from the

conservation equation,

T ftgs � �
c�Ws � c�Wl � c�T

�
s � h�T� � Ts� � c�T

fzg
s

c	
�

(15)
Substituting this expression into the infinitesimal criterion
of equation (14) gives
Pr���v�f� � vWs

c� � vWl
c� � vh�T� � Ts� � vT�h

�vTs��c�T
�
s � h� � c	

�
v
ftg
Ts

� T fzgs vftgz

�
�c�

�
v
fzg
Ts

� T fzgs

�
vfzgz � T fzgs vfTsgz

�
� T fzgs v

fTsg
Ts

�
�c	�T

ftg
s ��v

fTsg
t � T ftgs

�
c�

�
v
fzg
t � T fzgs v

fTsg
t

�
�c	

�
v
ftg
t � T fzgs vfTsgz � v

fTsg
Ts

��
� ��

This equation must hold for all T
fzg
s . Therefore, the

functions corresponding to the coefficients of T fzg
s must

be zero. Consequently, after collecting this monomial and
the constant monomial, it is apparent that the following
conditions must be satisfied

c�

c	
�c� v

fzg
t � c	 vz

fzg� � �c� vt
ftg � c	 vz

ftg� (16)

�
rc

c	
�c� v

fTsg
t � c	 vz

fTsg� � �

c� vWs
� c� vWl

� h�vT� � vTs� � vh �T� � Ts�

�� c� Ts
� vTs �

c�

c	
�rc v

fzg
t � c	 vTs

fzg� (17)

��rc v
ftg
t � c	 vTs

ftg��
rc

c	
�rc v

fTsg
t � c	 vTs

fTsg� � �

where
rc � c�Ws � c�Wl � h �T� � Ts� � c� Ts

��

A basis (�) can be found after finding the most general
solution for the unknowns, vxj �x�. The most general
solution for equation (16) is

vz �
c�

c	
vt � g�

where g� is an arbitrary function satisfying

c� g
fzg
� � c	 g

ftg
� � rc g

fTsg
� � ��

The exact form of g� need not be found since vz does not
appear in the second equation. Equation (17) is a nonlinear
PDE that cannot be solved analytically with the current
state of the art. However, for very short time periods, one
may approximate Ws�Wl� h, and T� as constant. If an
invariant is found under these conditions, then resources
can be allocated to attempt to generalize it. Conversely,
if no invariants are found under these conditions, it is
highly unlikely that they will exist in general because the
approximation only involves variables that are independent
of Ts. Using this approximation, the conservation equation



may be rewritten as
c�U

ftg � c�U
fzg � c�U � c�U

� � c	 � � (18)

where U represents Ts. The tangent vector for this equation
is

v � vU
�

�U
� vt

�

�t
� vz

�

�z
and the infinitesimal criterion yields a system of equations
are very similar to equation (16) and equation (17)

c�

c�
�c� v

fzg
t � c� vz

fzg� � �c� vt
ftg � c� vz

ftg� (19)

�
rc

c�
�c� v

fUg
t � c� vz

fUg� � �

�c� � � c�U
�� vU �

c�

c�
�rc v

fzg
t � c� vU

fzg� (20)

��rc v
ftg
t � c� vU

ftg��
rc

c�
�rc v

fUg
t � c� vU

fUg� � �

where
rc � c�U � c�U

� � c	�

A basis (�) can be found after finding the most general
solution for the unknowns, vxj �x�. The most general
solution for equation (19) is

vz �
c�

c�
vt � g�

where g� is an arbitrary function satisfying
c� g

ftg
� � c� g

fzg
� � rc g

fUg
� � ��

The exact form of g� need not be found since vz does not
appear in the second equation. The second equation may
be solved for vU ,

vU � rc

�
�

	

c�
vt � g�

	
where g� is an arbitrary function satisfying

c� g
ftg
� � c� g

fzg
� � rc g

fUg
� � �

although all that really need be known about g� is that it is
an arbitrary function.

These solutions are substituted into the tangent vector,

v � vU
�

�U
� vt

�

�t
� vz

�

�z

�

�
rc

�
�

	

c�
vt � g�

		
�

�U
� vt

�

�t
�

�
c�

c�
vt � g�

	
�

�z

� g�

�
�

�z

	
� g�

�
rc

�

�U

	
� vt

�
�

�t
�

rc

c�

�

�U
�

c�

c�

�

�z

	
�

Therefore, the basis is

� �

�
�

�z
� rc

�

�U
��

rc

c�

�

�U
�

�

�t
�

c�

c�

�

�z

�

�

�
�

�t
�
�

�z
� rc

�

�U

�
�

A constant function and the original conservation equation
are the only solutions of these three generators. Therefore,
only trivial invariants exist for this differential form of the
conservation equation. Similar results were found for the
finite-difference form of the conservation equation.

5. Conclusions

Prior to this body of research, no published attempts have
been made at applying Lie group analysis to LWIR imagery.
The current work considers absolute intensity invariants of
a single point in LWIR imagery and it is not surprising that
only trivial invariants exist for this case. The techniques of
Lie group analysis provides a powerful tool for construct-
ing functions that can serve as classifier features for object
recognition problems. An advantage of these techniques is
that they are not sensor specific. Thus, this approach is ap-
plicable to data from all parts of the frequency spectrum.

This work, along with further developments, applica-
tions, and experiments in [1], form the foundation of the
theory needed for future work in simultaneous covariants
(a generalization of relative invariants and absolute invari-
ants). The theory of simultaneous covariants will allow us
to (analytically) consider the more general cases of several
points changing together through time. Furthermore, the
rigorous definition of quasi-invariants developed in [2] will
provide empirical solutions that are equally useful. We be-
lieve that these are the tools and techniques which will allow
the next generation of object recognition systems to handle
general scenarios and sensors.
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